Alfalfa: A Companion Crop with Corn

Hans Jung
USDA-Agricultural Research Service
St. Paul, MN
Why Alfalfa/Corn Short Rotations?

• National bioenergy goals require massive amounts of biomass.
• The Midwestern Corn Belt cannot be excluded if required biomass supply is to be achieved.
• Bioenergy must be an additional product of agriculture – cannot reduce food and feed supply.
• Alfalfa/Corn Short Rotations offer the potential to maintain food and feed production while providing a sustainable cellulosic biomass supply … without plowing more acres.
Why Alfalfa/Corn Short Rotations?

- National bioenergy goals require massive amounts of biomass.
- The Midwestern Corn Belt cannot be excluded if required biomass supply is to be achieved.
- Bioenergy must be an additional product of agriculture – cannot reduce food and feed supply.
- Alfalfa/Corn Short Rotations offer the potential to maintain food and feed production while providing a sustainable cellulosic biomass supply … without plowing more acres.
Why Alfalfa/Corn Short Rotations?

- National bioenergy goals require **massive** amounts of biomass.
- The Midwestern **Corn Belt cannot be excluded** if required biomass supply is to be achieved.
- Bioenergy must be an additional product of agriculture – cannot reduce food and feed supply.
- Alfalfa/Corn Short Rotations offer the potential to maintain food and feed production while providing a sustainable cellulosic biomass supply … without plowing more acres.
Why Alfalfa/Corn Short Rotations?

- National bioenergy goals require **massive** amounts of biomass.
- The Midwestern **Corn Belt cannot be excluded** if required biomass supply is to be achieved.
- Bioenergy must be an **additional product** of agriculture – cannot reduce food and feed supply.
- Alfalfa/Corn Short Rotations offer the potential to maintain food and feed production while providing a sustainable cellulosic biomass supply … without plowing more acres.
Why Alfalfa/Corn Short Rotations?

• National bioenergy goals require **massive** amounts of biomass.
• The Midwestern **Corn Belt cannot be excluded** if required biomass supply is to be achieved.
• Bioenergy must be an **additional product** of agriculture – cannot reduce food and feed supply.
• Alfalfa/Corn Short Rotations offer the potential to **maintain food and feed** production while providing a **sustainable cellulosic biomass** supply … without plowing more acres.
U.S. Midwest Corn Belt
2009 Crop Harvest (millions of acres)

Corn – 71 million acres; Soybean – 61 million acres; Alfalfa – 12 million acres
Economic Advantages of an Alfalfa/Corn System

- Alfalfa is an established crop (21 million acres, $8 billion in 2009) with excellent infrastructure (seed, equipment, experience).
- Alfalfa can provide protein feed for livestock (leaves) and cellulosic biomass (stems).
- Alfalfa supplies own N fertilizer and could provide about 75% of N needed by following 2 yrs of corn.
- Corn grain yields are 5 to 15% higher following alfalfa than after soybean.
Economic Advantages of an Alfalfa/Corn System

- Alfalfa is an established crop (21 million acres, $8 billion in 2009) with excellent infrastructure (seed, equipment, experience).
- Alfalfa can provide protein feed for livestock (leaves) and cellulosic biomass (stems).
- Alfalfa supplies own N fertilizer and could provide about 75% of N needed by following 2 yrs of corn.
- Corn grain yields are 5 to 15% higher following alfalfa than after soybean.
Economic Advantages of an Alfalfa/Corn System

• Alfalfa is an established crop (21 million acres, $8 billion in 2009) with excellent infrastructure (seed, equipment, experience).

• Alfalfa can provide protein feed for livestock (leaves) and cellulosic biomass (stems).

• Alfalfa supplies own N fertilizer and could provide about 75% of N needed by following 2 yrs of corn.

• Corn grain yields are 5 to 15% higher following alfalfa than after soybean.
Economic Advantages of an Alfalfa/Corn System

• Alfalfa is an established crop (21 million acres, $8 billion in 2009) with excellent infrastructure (seed, equipment, experience).

• Alfalfa can provide protein feed for livestock (leaves) and cellulosic biomass (stems).

• Alfalfa supplies own N fertilizer and could provide about 75% of N needed by following 2 yrs of corn.

• Corn grain yields are 5 to 15% higher following alfalfa than after soybean.
Economic Advantages of an Alfalfa/Corn System

• Alfalfa is an established crop (21 million acres, $8 billion in 2009) with excellent infrastructure (seed, equipment, experience).

• Alfalfa can provide protein feed for livestock (leaves) and cellulosic biomass (stems).

• Alfalfa supplies own N fertilizer and could provide about 75% of N needed by following 2 yrs of corn.

• Corn grain yields are 5 to 15% higher following alfalfa than after soybean.
Environmental Advantages of an Alfalfa/Corn System

• Reduced greenhouse gas emissions because of N fixation in place of fertilizer.
• Reduced soil erosion because of early spring and fall ground cover and less frequent tillage.
• Reduced nutrient run-off into surface water and leaching into groundwater because of less N fertilizer and soil erosion reduction.
• Greater carbon sequestration by deep rooted alfalfa.
Environmental Advantages of an Alfalfa/Corn System

• Reduced **greenhouse gas emissions** because of N fixation in place of fertilizer.
• Reduced soil erosion because of early spring and fall ground cover and less frequent tillage.
• Reduced nutrient run-off into surface water and leaching into groundwater because of less N fertilizer and soil erosion reduction.
• Greater carbon sequestration by deep rooted alfalfa.
Environmental Advantages of an Alfalfa/Corn System

- Reduced **greenhouse gas emissions** because of N fixation in place of fertilizer.
- Reduced **soil erosion** because of early spring and fall ground cover and less frequent tillage.
- Reduced nutrient run-off into surface water and leaching into groundwater because of less N fertilizer and soil erosion reduction.
- Greater carbon sequestration by deep rooted alfalfa.
Environmental Advantages of an Alfalfa/Corn System

• Reduced **greenhouse gas emissions** because of N fixation in place of fertilizer.
• Reduced **soil erosion** because of early spring and fall ground cover and less frequent tillage.
• Reduced **nutrient run-off** into surface water and leaching into groundwater because of less N fertilizer and soil erosion reduction.
• Greater carbon sequestration by deep rooted alfalfa.
Environmental Advantages of an Alfalfa/Corn System

• Reduced **greenhouse gas emissions** because of N fixation in place of fertilizer.

• Reduced **soil erosion** because of early spring and fall ground cover and less frequent tillage.

• Reduced **nutrient run-off** into surface water and leaching into groundwater because of less N fertilizer and soil erosion reduction.

• Greater **carbon sequestration** by deep rooted alfalfa.
History of Alfalfa for Bioenergy

• From 1993 to 2000 Univ. of Minnesota and USDA-ARS partnered with Minnesota Valley Alfalfa Producers, Northern States Power, and DOE.

• Project to produce 75 MW of electricity from alfalfa stems and leaf meal protein feed.

• Favored crop rotation was 2 yrs corn, 1 yr soybean, 4 yrs alfalfa.

• Project signed Power Purchase Agreement prior to collapse.
History of Alfalfa for Bioenergy
(continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
History of Alfalfa for Bioenergy
(continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
History of Alfalfa for Bioenergy (continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
History of Alfalfa for Bioenergy (continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
History of Alfalfa for Bioenergy (continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
History of Alfalfa for Bioenergy (continued)

• Important lessons learned:
 – Corn/soybean farmers willing to add alfalfa to crop rotation.
 – Alfalfa hay can be easily separated into leaf and stem fractions.
 – Leaf meal can substitute for soybean meal as protein feed for dairy and beef cattle.

• Rotation must be shortened and simplified:
 – Yield differential between corn and other crops is too large.
 – Alfalfa must replace or exceed soybean protein and bioenergy yields.
How Would Alfalfa/Corn Rotation System Function?

• Alfalfa grown for 2 yrs (seeding yr and one full production yr).
• Alfalfa harvested two to four times annually from June to September.
• Two yrs of corn would follow alfalfa with reduced N fertilizer application.
• A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.
• Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
How Would Alfalfa/Corn Rotation System Function?

• Alfalfa grown for 2 yrs (seeding yr and one full production yr).
• Alfalfa harvested two to four times annually from June to September.
• Two yrs of corn would follow alfalfa with reduced N fertilizer application.
• A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.
• Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
How Would Alfalfa/Corn Rotation System Function?

• Alfalfa grown for 2 yrs (seeding yr and one full production yr).
• Alfalfa harvested two to four times annually from June to September.
• Two yrs of corn would follow alfalfa with reduced N fertilizer application.
• A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.
• Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
How Would Alfalfa/Corn Rotation System Function?

• Alfalfa grown for 2 yrs (seeding yr and one full production yr).

• Alfalfa harvested two to four times annually from June to September.

• Two yrs of corn would follow alfalfa with reduced N fertilizer application.

• A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.

• Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
How Would Alfalfa/Corn Rotation System Function?

• Alfalfa grown for 2 yrs (seeding yr and one full production yr).
• Alfalfa harvested two to four times annually from June to September.
• Two yrs of corn would follow alfalfa with reduced N fertilizer application.
• A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.
• Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
How Would Alfalfa/Corn Rotation System Function?

- Alfalfa grown for 2 yrs (seeding yr and one full production yr).
- Alfalfa harvested two to four times annually from June to September.
- Two yrs of corn would follow alfalfa with reduced N fertilizer application.
- A portion of corn stover would be harvested for bioenergy - C sequestration by deep-rooted alfalfa may allow for more corn stover removal.
- Alfalfa would be fractionated into leaf protein product for livestock feed and stems for bioenergy.
Composition of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa (N=153)</th>
<th>Corn stover (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Hexose</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Xylose</td>
<td>10</td>
<td>19</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Pentose</td>
<td>12</td>
<td>22</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Total CHO</td>
<td>55</td>
<td>55</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>Lignin</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
Composition of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa stem (N=153)</th>
<th>Corn stover (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Hexose</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Xylose</td>
<td>10</td>
<td>19</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Pentose</td>
<td>12</td>
<td>22</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Total CHO</td>
<td>55</td>
<td>55</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>Lignin</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
Composition of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa (N=153)</th>
<th>Corn stover (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Hexose</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Xylose</td>
<td>10</td>
<td>19</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Pentose</td>
<td>12</td>
<td>22</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Total CHO</td>
<td>55</td>
<td>55</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>Lignin</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
Composition of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa (N=153)</th>
<th>Corn (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stem stover</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>herbage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>33</td>
<td>10</td>
<td>12</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>31</td>
<td>19</td>
<td>22</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>26</td>
<td>29</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>28</td>
<td>19</td>
<td>22</td>
<td>52</td>
<td>17</td>
</tr>
</tbody>
</table>

Composition of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa stem (N=153)</th>
<th>Corn stover (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>Hexose</td>
<td>33</td>
<td>31</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Xylose</td>
<td>10</td>
<td>19</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Pentose</td>
<td>12</td>
<td>22</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Total CHO</td>
<td>55</td>
<td>55</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>Lignin</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
Variability of Cellulosic Biomass

<table>
<thead>
<tr>
<th>Cell Wall Component</th>
<th>Alfalfa stem (N=153)</th>
<th>Corn stover (N=32)</th>
<th>Corn cob (N=56)</th>
<th>Switchgrass herbage (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>18-37</td>
<td>23-34</td>
<td>20-33</td>
<td>14-32</td>
</tr>
<tr>
<td>Hexose</td>
<td>21-41</td>
<td>26-36</td>
<td>23-34</td>
<td>15-34</td>
</tr>
<tr>
<td>Xylose</td>
<td>5-13</td>
<td>15-23</td>
<td>18-33</td>
<td>9-24</td>
</tr>
<tr>
<td>Pentose</td>
<td>6-15</td>
<td>18-27</td>
<td>22-35</td>
<td>10-27</td>
</tr>
<tr>
<td>Total CHO</td>
<td>40-62</td>
<td>47-64</td>
<td>47-69</td>
<td>28-62</td>
</tr>
<tr>
<td>Lignin</td>
<td>7-22</td>
<td>6-12</td>
<td>3-15</td>
<td>9-26</td>
</tr>
</tbody>
</table>
How Does Corn/Alfalfa Compare for Ethanol and Protein Yield?

Minnesota Example

- Corn yield (2005 to 2009 average) was 164 bu of grain/acre (stover yield approximately equal).
- Soybean yield was 42 bu/acre.
- Alfalfa hay yield was 3.2 ton/acre (leaf fraction 40 to 60%).
Assumptions for Ethanol Yields

• 2.8 gal ethanol and 17 lb DDGS per bu corn.
• 1.4 gal biodiesel and 47.5 lb SBM per bu soybean.
• 1 gal biodiesel is energy equivalent to 1.621 gal ethanol.
• 15% of total corn stover is cob and 50% of alfalfa is stem.
• Used maximum hexose and pentose for cellulosic feedstocks and NREL theoretical ethanol calculator.
• 75% conversion efficiency of theoretical ethanol yields.
Per Acre Yields

Minnesota Example

<table>
<thead>
<tr>
<th>Species</th>
<th>Ethanol Gal/Acre</th>
<th>Protein Tons/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn (grain)</td>
<td>459</td>
<td>0.42</td>
</tr>
<tr>
<td>Corn (½ stover)</td>
<td>192</td>
<td>0</td>
</tr>
<tr>
<td>Soybeans</td>
<td>96*</td>
<td>0.50</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>115</td>
<td>0.44</td>
</tr>
</tbody>
</table>

* Ethanol energy equivalent of biodiesel.
Cropping System Yields
Minnesota Example

<table>
<thead>
<tr>
<th>System</th>
<th>Ethanol Gal/Acre</th>
<th>Protein Tons/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn/Soybean</td>
<td>373</td>
<td>0.46</td>
</tr>
<tr>
<td>Corn/Corn</td>
<td>618</td>
<td>0.40</td>
</tr>
<tr>
<td>Corn/Alfalfa</td>
<td>399</td>
<td>0.44</td>
</tr>
</tbody>
</table>

a All systems assume 50% corn stover removal.

b Assumes 5% corn yield reduction vs. corn/soybean.

c Assumes 5% corn yield increase over corn/soybean.
Biomass-Type Alfalfa + Biomass Management Doubles Ethanol Yield

Production System

- Hay: +40%
- Biomass: +99%

Impact of Improvements to Corn/Alfalfa System

C/S C/C C/A C/A+ C+/A+

Cropping System

Ethanol Yield (gal/acre)

+ 15% + 24%

Biomass Alalfa 75% Stover Removal
<table>
<thead>
<tr>
<th>System</th>
<th>Gal/Acre</th>
<th>Acres</th>
<th>Land Area*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn/Soybean</td>
<td>192</td>
<td>260381</td>
<td>26 (52)</td>
</tr>
<tr>
<td>Corn/Corn</td>
<td>182</td>
<td>274084</td>
<td>27</td>
</tr>
<tr>
<td>Corn/Alfalfa</td>
<td>159</td>
<td>315410</td>
<td>31</td>
</tr>
<tr>
<td>Corn/Alfalfa+</td>
<td>216</td>
<td>231232</td>
<td>23</td>
</tr>
<tr>
<td>Corn+/Alfalfa+</td>
<td>267</td>
<td>187519</td>
<td>19</td>
</tr>
</tbody>
</table>

* 25 mile radius (1.257 million acres), assumes 80% of land available for cropping.
Annual Distribution of Biomass Harvest

• In a corn stover-only system, all biomass harvesting is in October/November – requires 10 month storage capacity.

• Alfalfa is harvested during the summer– approximately 40, 30, and 30% of total yield in June, July, and August harvests.

• An Alfalfa/Corn system could reduce storage capacity requirements by 30%.
Bioenergy Yields Need to be Adjusted to Net Energy Yields

- Corn bioenergy yield will be reduced in C/S and C/C rotations by energy used to make N fertilizer compared with C/A.
- Energy costs of cellulosic ethanol are greater than starch ethanol or biodiesel conversion – impact will vary among rotations.
- Energy costs for cellulosic biomass storage will be greater for C/S and C/C than C/A rotation.
- Energy needed for tillage every year for C/S and C/C rotations compared with 25% less for C/A – but benefit off-set by more frequent alfalfa harvests.
Livestock Response to Feeding Alfalfa Leaf Meal

• Successfully replaced SBM as a protein source for calves, lactating dairy cows, and feedlot steers.

• Successfully replaced up to half the alfalfa hay in lactating dairy cow diets.

• Better feed intake and weight gain of feedlot steers.

• May reduce incidence of liver abscess in feedlot steers at slaughter.

Nutrient Composition of Alfalfa Leaf Meal and Other Major Ingredients

<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

** NRC. 2001.
Nutrient Composition of Alfalfa Leaf Meal and Other Major Ingredients

<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

** NRC. 2001.
Nutrient Composition of Alfalfa Leaf Meal and Other Major Ingredients

<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

** NRC. 2001.
Nutrient Composition of Alfalfa Leaf Meal and Other Major Ingredients

<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

----- % DM -----

** NRC. 2001.
Nutrient Composition of Alfalfa Leaf Meal and Other Major Ingredients

<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

--- % DM ---

** NRC. 2001.
<table>
<thead>
<tr>
<th>Feed</th>
<th>Protein</th>
<th>Fiber</th>
<th>Fat</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM*</td>
<td>28</td>
<td>34</td>
<td>2.8</td>
<td>2.47</td>
<td>0.34</td>
</tr>
<tr>
<td>DDGS**</td>
<td>30</td>
<td>39</td>
<td>10.0</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>SBM**</td>
<td>50</td>
<td>15</td>
<td>1.6</td>
<td>0.40</td>
<td>0.71</td>
</tr>
<tr>
<td>Corn**</td>
<td>9</td>
<td>10</td>
<td>4.2</td>
<td>0.04</td>
<td>0.30</td>
</tr>
</tbody>
</table>

** NRC. 2001.
Summary

• Alfalfa/Corn short rotations could provide cellulosic biomass for bioenergy while maintaining food and feed production, improving the profitability and sustainability of corn production, and reducing greenhouse gas emissions.

• Converting only 10% of Minnesota’s corn/soybean rotation acreage to corn/alfalfa could supply enough cellulosic biomass to produce 300 million gal of ethanol/yr.

How do we move this concept forward?